【2018考研数学】用技巧快速解决单选问题
1.只要遇到向量线性相关性问题,就要想到考查由其所构造的齐次线性方程组有无非零解,只要遇到某向量能否由一向量组线性表示问题,就要想到考查由其构造的非齐次方程组有无解。
2.只要遇到无穷小比较或∞.0型未定式极限问题;或通项中含有“反对三指”函数关系的数项级数的敛散性问题,就要想到利用等价无穷小代换或皮亚诺型余项的泰勒公式求解。注:“反对三指”:反三角函数,对数函数,三角函数,指数函数。
个人说明:大家应该熟记基本函数的泰勒公式,一般展开到三阶的就可以了。此外特提供不常见的三个重要展开式:
arcsinx=x+x^3/3!+o(x^3) 注:此公式后项无此规律!
tanx=x+x^3+o(x^3) 注:此公式后项无此规律!
arctanx=x-x^3+o(x^3)
例:当x->0时,x-arcsinx是__无穷小,根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。
3.无穷比无穷型未定式极限值取决于分子,分母最高幂次无穷大项之比,0比0型未定式极限值取决于分子,分母最低阶无穷小项之比。
4.只要遇到由积分上限函数确定的无穷小的阶的问题,则想到:
① 积分上限变量与被积函数的无穷小因子可用等价无穷小代换之。
② 两个由积分上限函数确定的无穷小量,若其积分上限无穷小同阶,则其阶取决于被积函数无穷小的阶;若被积函数无穷小同阶或都不是无穷小,则其阶取决于积分上限无穷小的阶。
5.由“你导我不导减去我导你不导”应想到“你我”做商的函数的导数的分子。注:你-f(x),我-g(x)。“你导我不导减去我导你不导”即f(x)/g(x)的导数的分子!
6.只要遇到积分区间关于原点对称的定积分问题,就要想到先考查被积函数或其代数和的每一部分是否具有奇偶性。
7.①只要遇到类似B=AC形式的条件问题,就要想到考查乘积因子中有无可逆矩阵,以此获得B与A或B与C的秩的关系,进而讨论B与A或B与C的行(列)向量组的线性相关性的关系,或以B与A或B与C为系数矩阵的齐次线性方程组的解的关系。
② 越乘秩越小
③ 灵活运用单位矩阵的方法:招之即来,挥之即去。
8.只要遇到题干条件或备选项中有f(-x),-f(x),-f(-x)等,就要想到利用图形对称性求解。
9.只要遇到对积分上限函数求导问题,就要想到被积函数中是否混杂着求导变量(显含或隐含) 若显含时,即被积函数为求导变量函数与积分变量函数乘积(或代数和)若隐含时,则必须作第二类换元法,把求导变量从被积函数中“挖”出来,其出路只有两条:一是显含在被积函数中,二是跑到积分限上。
10.只要遇到抽象矩阵求逆问题或矩阵方程问题,就要想到利用AB=E,即若AB=E(A,B为方阵),则A,B均可逆,且A的逆矩阵=B,B的逆矩阵=A。
11.①相关组加向量仍相关
②无关组减向量仍无关
③无关组加分量仍无关